Smita Devendra Lilhare, Kalyani Sakure*, Anjali Patel, Kushagra Nagori, Savitri Uttam Pathode, Ajazuddin and Hemant badwaik Pages 1 - 13 ( 13 )
The field of cancer therapy has witnessed significant strides with the emergence of innovative drug delivery systems and one such promising avenue is solid lipid-based nanoparticle (SLN) technology. This abstract provides a complete overview of current advances in developing SLNs for effective cancer treatment solid lipid nanoparticles (NPs) represent a novel drug delivery platform characterized by their unique composition which includes biocompatible lipids as the main carrier material. This technology addresses challenges related to standard chemotherapy such as low bioavailability limited medicine stability and non-specific targeting. The incorporation of lipids in SLNs ensures enhanced drug encapsulation, protection of therapeutic agents from degradation-controlled release profiles. Recent breakthroughs in SLN technology have focused on optimizing formulation parameters to achieve superior drug loading capacities stability and sustained release kinetics. Advanced fabrication techniques including high-pressure homogenization and microemulsion methods have been pivotal in tailoring SLN properties for specific cancer types and therapeutic agents. Furthermore, SLNs' capacity to passively build up in tumor tissues using increased penetration and retention effects has been harnessed for targeted drug transport. Surface modifications using ligands or antibodies to facilitate active targeting, enhancing medication delivery's selectivity to tumor cells decreasing unwanted effects on normal tissues. This abstract highlights recent preclinical and clinical studies demonstrating the efficacy of SLN-based formulations in enhancing the therapeutic outcomes of various anticancer agents. The versatile nature of SLN technology makes it a viable option for the advancement of personalized and precision cancer therapies, marking a significant stride toward overcoming the limitations of conventional cancer treatments. As research in this domain progresses, the integration of SLNs holds immense potential for revolutionizing tumor treatment strategies.
Solid lipid nanoparticles, cancer, drug delivery, chemotherapy.